117 research outputs found

    Promoter Hypermethylation Mediated Downregulation of FBP1 in Human Hepatocellular Carcinoma and Colon Cancer

    Get PDF
    FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10) human hepatocellular carcinoma, 66.7% (6/9) liver cancer cell lines and 100% (6/6) colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2β€²-deoxycytidine (Aza), indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS) generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis

    Modulation of Hydrogen Peroxide Production in Cellular Systems by Low Level Magnetic Fields

    Get PDF
    Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, suggesting that ROS might be involved in the development of these cells. However, recent studies suggest that inducing an excess of ROS in cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumors frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially modulate the development of these cells by controlling their ROS production. Low levels of ROS are also important for the development and survival of normal cells. In this manuscript, we present data on the influence of the suppression of the Earth's magnetic field (low level magnetic fields or LLF) which magnitudes range from 0.2 Β΅T to 2 Β΅T on the modulation of hydrogen peroxide (H2O2) in human fibrosarcoma cancer cell line HT1080, pancreatic AsPC-1 cancer cell line, and bovine pulmonary artery endothelial cells (PAEC) exposed to geomagnetic field (control; 45 Β΅T–60 Β΅T). Reduction of the Earth's magnetic field suppressed H2O2 production in cancer cells and PAEC. The addition of catalase and superoxide dismutase (SOD) mimetic MnTBAP inhibited the magnetic field effect. Modulating ROS production by magnetic fields may open new venues of biomedical research and therapeutic strategies

    Ex vivo chemosensitivity testing and gene expression profiling predict response towards adjuvant gemcitabine treatment in pancreatic cancer

    Get PDF
    Efficacy of chemotherapy for pancreatic cancer may be improved by tailoring it to individual chemosensitivity profiles. Identification of nonresponders before initiation of treatment may help to avoid side effects. In this study, primary pancreatic cancer cells were isolated from 18 patients undergoing pancreaticoduodenectomy for pancreatic cancer. Eight commonly used pancreatic cancer cell lines were used as controls. Ex vivo chemosensitivity for gemcitabine, 5-fluorouracil, mitomycin-C, cisplatinum, oxaliplatinum, paclitaxel and a combination of gemcitabine with oxaliplatinum or mitomycin-C was determined using a cellular ATP-based tumour chemosensitivity assay (ATP-TCA). Quantitative real-time–polymerase chain reaction was performed to determine RNA expression levels of genes implicated in chemoresistance. Chemosensitivity towards cytotoxic agents was highly variable in primary pancreatic cancer cells and pancreatic cancer cell lines. ATP-TCA results for gemcitabine correlated to the tissue expression of human equilibrative nucleoside transporter-1 (hENT1). Time to relapse in patients with gemcitabine-sensitive tumours was significantly higher than in patients with chemoresistant pancreatic cancers (P=0.01; 71 vs 269 days). Furthermore, time to relapse in gemcitabine-treated patients was related to hENT1 expression (P=0.0067). Thus, chemosensitivity testing using ATP-TCA in pancreatic cancer is feasible and correlated with time to relapse in gemcitabine-treated patients. This suggests that ATP-TCA testing could be used as a decision-making tool in the adjuvant treatment of pancreatic cancer

    Decreased expression of the Augmenter of Liver Regeneration results in increased apoptosis and oxidative damage in human-derived glioma cells

    Get PDF
    The mammalian growth factor erv1-like (GFER) gene encodes a sulfhydryl oxidase enzyme, named Augmenter of Liver Regeneration (ALR). Recently it has been demonstrated that ALR supports cell proliferation acting as an anti-apoptotic factor. This effect is determined by ALR ability to support the anti-apoptotic gene expression and to preserve cellular normoxic conditions. We recently demonstrated that the addition of recombinant ALR (rALR) in the culture medium of H2O2-treated neuroblastoma cells reduces the lethal effects induced by the hydrogen peroxide. Similar data have been reported in the regenerating liver tissue from partially hepatectomized rats treated with rALR. The purpose of the present study was to evaluate the effect of the GFER inhibition, via the degradation of the complementary mRNA by the specific siRNA, on the behaviour of the apoptosis (apoptotic gene and caspase expression and apoptotic cell number) and of the oxidative stress-induced parameters (reactive oxygen species (ROS), clusterin expression and mitochondrial integrity) in T98G glioma cells. The results revealed a reduction of (i) ALR, (ii) clusterin and (iii) bcl-2 and an increase of (iv) caspase-9, activated caspase-3, ROS, apoptotic cell number and mitochondrial degeneration. These data confirm the anti-apoptotic role of ALR and its anti-oxidative properties, and shed some light on the molecular pathways through which ALR modulates its biological effects

    Mitochondrial targeted catalase suppresses invasive breast cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential.</p> <p>Methods</p> <p>Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined.</p> <p>Results</p> <p>PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≀ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue compared with 1.3 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue in PyMT mice expressing the wild type allele (p ≀ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects.</p> <p>Conclusion</p> <p>Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.</p> <p>Please see related commentary article: <url>http://www.biomedcentral.com/1741-7015/9/62</url></p

    Disulfiram modulated ROS–MAPK and NFΞΊB pathways and targeted breast cancer cells with cancer stem cell-like properties

    Get PDF
    BACKGROUND: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs). METHODS: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker analysis. RESULTS: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 mu M), the IC50 concentrations of DS in BC cell lines were 200-500 nM. Disulfiram/copper significantly enhanced (3.7-15.5-fold) cytotoxicity of paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis. Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1(+VE) and CD24(Low)/CD44(High) CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK pathways. Meanwhile, the constitutive NF kappa B activity in BC cell lines was inhibited by DS/Cu. CONCLUSION: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by simultaneous induction of ROS and inhibition of NF kappa B. British Journal of Cancer (2011) 104, 1564-1574. doi: 10.1038/bjc.2011.126 www.bjcancer.com Published online 12 April 2011 (C) 2011 Cancer Research U

    Hypoxia induces differential translation of enolase/MBP-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxic microenvironments in tumors contribute to transformation, which may alter metabolism, growth, and therapeutic responsiveness. The Ξ±-enolase gene encodes both a glycolytic enzyme (Ξ±-enolase) and a DNA-binding tumor suppressor protein, c-myc binding protein (MBP-1). These divergent Ξ±-enolase gene products play central roles in glucose metabolism and growth regulation and their differential regulation may be critical for tumor adaptation to hypoxia. We have previously shown that MBP-1 and its binding to the c-myc P<sub>2 </sub>promoter regulates the metabolic and cellular growth changes that occur in response to altered exogenous glucose concentrations.</p> <p>Results</p> <p>To examine the regulation of Ξ±-enolase and MBP-1 by a hypoxic microenvironment in breast cancer, MCF-7 cells were grown in low, physiologic, or high glucose under 1% oxygen. Our results demonstrate that adaptation to hypoxia involves attenuation of MBP-1 translation and loss of MBP-1-mediated regulation of c-myc transcription, evidenced by decreased MBP-1 binding to the c-myc P<sub>2 </sub>promoter. This allows for a robust increase in c-myc expression, "early c-myc response", which stimulates aerobic glycolysis resulting in tumor acclimation to oxidative stress. Increased Ξ±-enolase mRNA and preferential translation/post-translational modification may also allow for acclimatization to low oxygen, particularly under low glucose concentrations.</p> <p>Conclusions</p> <p>These results demonstrate that malignant cells adapt to hypoxia by modulating Ξ±-enolase/MBP-1 levels and suggest a mechanism for tumor cell induction of the hyperglycolytic state. This important "feedback" mechanism may help transformed cells to escape the apoptotic cascade, allowing for survival during limited glucose and oxygen availability.</p

    Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development.

    Get PDF
    Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in comparison to routinely used adult lines

    Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celastrol is an active ingredient of the traditional Chinese medicinal plant <it>Tripterygium Wilfordii</it>, which exhibits significant antitumor activity in different cancer models <it>in vitro </it>and <it>in vivo</it>; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity.</p> <p>Methods</p> <p>The downregulation of heat shock protein 90 (HSP90) client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK), and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS) was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP) and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC) complexes.</p> <p>Results</p> <p>Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC), an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP). Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 ΞΌM celastrol in the absence and presence of NAC. Moreover, the inhibition of MRC complex I activity preceded ROS accumulation in H1299 cells after celastrol treatment.</p> <p>Conclusion</p> <p>We identified ROS as the key intermediate for celastrol-induced cytotoxicity. JNK was activated by celastrol-induced ROS accumulation and then initiated mitochondrial-mediated apoptosis. Celastrol induced the downregulation of HSP90 client proteins through ROS accumulation and facilitated ROS accumulation by inhibiting MRC complex I activity. These results identify a novel target for celastrol-induced anticancer activity and define its mode of action.</p

    Oxygen Consumption Can Regulate the Growth of Tumors, a New Perspective on the Warburg Effect

    Get PDF
    The unique metabolism of tumors was described many years ago by Otto Warburg, who identified tumor cells with increased glycolysis and decreased mitochondrial activity. However, "aerobic glycolysis" generates fewer ATP per glucose molecule than mitochondrial oxidative phosphorylation, so in terms of energy production, it is unclear how increasing a less efficient process provides tumors with a growth advantage.We carried out a screen for loss of genetic elements in pancreatic tumor cells that accelerated their growth as tumors, and identified mitochondrial ribosomal protein L28 (MRPL28). Knockdown of MRPL28 in these cells decreased mitochondrial activity, and increased glycolysis, but paradoxically, decreased cellular growth in vitro. Following Warburg's observations, this mutation causes decreased mitochondrial function, compensatory increase in glycolysis and accelerated growth in vivo. Likewise, knockdown of either mitochondrial ribosomal protein L12 (MRPL12) or cytochrome oxidase had a similar effect. Conversely, expression of the mitochondrial uncoupling protein 1 (UCP1) increased oxygen consumption and decreased tumor growth. Finally, treatment of tumor bearing animals with dichloroacetate (DCA) increased pyruvate consumption in the mitochondria, increased total oxygen consumption, increased tumor hypoxia and slowed tumor growth.We interpret these findings to show that non-oncogenic genetic changes that alter mitochondrial metabolism can regulate tumor growth through modulation of the consumption of oxygen, which appears to be a rate limiting substrate for tumor proliferation
    • …
    corecore